Cloud 101

Cloud Computing, Defined…

Cloud computing is a general term for anything that involves delivering hosted services over the Internet. The name cloud computing was inspired by the cloud symbol that’s often used to represent the Internet in flowcharts and diagrams.

Cloud computing means that computing can be used as a service rather than a product. This is possible because it has become cost-effective for companies (like Enterprise Hosting) to build data centers where computing and software can be provided remotely and rented out, like a utility service.

A cloud hosting service has three distinct characteristics that differentiate it from traditional hosting. It is sold on demand, typically by the minute or the hour; it is elastic — a user can have as much or as little of a service as they want at any given time; and the service is fully managed by the provider (the consumer needs nothing but a personal computer and Internet access). Significant innovations in virtualization and distributed computing, as well as improved access to high-speed Internet and a weak economy, have accelerated interest in cloud computing.

A cloud can be private or public. A public cloud sells services to anyone on the Internet. (Currently, Amazon Web Services is the largest public cloud provider.) A private cloud is a proprietary network or a data center that supplies hosted services to a limited number of people. When a service provider uses public cloud resources to create their private cloud, the result is called a virtual private cloud. Private or public, the goal of cloud computing is to provide easy, scalable access to computing resources and IT services.

These services are broadly divided into three categories: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS).

  • Infrastructure-as-a-Service In the enterprise, cloud computing allows a company to pay for only as much capacity as is needed, and bring more online as soon as required. Because this pay-for-what-you-use model resembles the way electricity, fuel and water are consumed, it’s sometimes referred to as utility computing.
  • Platform-as-a-Service in the cloud is defined as a set of software and product development tools hosted on the provider’s infrastructure. Developers create applications on the provider’s platform over the Internet. PaaS providers may use APIs, website portals or gateway software installed on the customer’s computer. Force.com, (an outgrowth of Salesforce.com) and GoogleApps are examples of PaaS. Developers need to know that currently, there are not standards for interoperability or data portability in the cloud. Some providers will not allow software created by their customers to be moved off the provider’s platform.
  • In the Software-as-a-Service cloud model, the vendor supplies the hardware infrastructure, the software product and interacts with the user through a front-end portal. SaaS is a very broad market. Services can be anything from Web-based email to inventory control and database processing. Because the service provider hosts both the application and the data, the end user is free to use the service from anywhere.

Cloud computing providers deliver applications via the Internet, which are accessed from web browsers and desktop and mobile apps, while the business software and data are stored on servers at a remote location. In a cloud computing system, there’s a significant workload shift. Local computers no longer have to do all the heavy lifting when it comes to running applications. The network of computers that make up the cloud handles them instead. Hardware and software demands on the user’s side decrease. The only thing the user’s computer needs to be able to run is the cloud computing system’s interface software, which can be as simple as a Web browser, and the cloud’s network takes care of the rest.

This type of data center environment allows enterprises to get their applications up and running faster, with easier manageability and less maintenance, and enables IT to more rapidly adjust IT resources (such as servers, storage, and networking) to meet fluctuating and unpredictable business demand.

Cloud Computing Architecture

When talking about a cloud computing system, it’s helpful to divide it into two sections: the front end and the back end. They connect to each other through a network, usually the Internet. The front end is the side the computer user, or client, sees. The back end is the “cloud” section of the system.

The front end includes the client’s computer (or computer network) and the application required to access the cloud computing system. Not all cloud computing systems have the same user interface. Services like Web-based e-mail programs leverage existing Web browsers like Internet Explorer or Firefox. Other systems have unique applications that provide network access to clients.

On the back end of the system are the various computers, servers and data storage systems that create the “cloud” of computing services. In theory, a cloud computing system could include practically any computer program you can imagine, from data processing to video games. Usually, each application will have its own dedicated server.

A central server administers the system, monitoring traffic and client demands to ensure everything runs smoothly. It follows a set of rules called protocols and uses a special kind of software called middleware. Middleware allows networked computers to communicate with each other. Most of the time, servers don’t run at full capacity. That means there’s unused processing power going to waste. It’s possible to fool a physical server into thinking it’s actually multiple servers, each running with its own independent operating system. The technique is called server virtualization. By maximizing the output of individual servers, server virtualization reduces the need for more physical machines.

When a cloud computing company has a lot of clients, there’s likely to be a high demand for a lot of storage space. Some companies require hundreds of digital storage devices. Cloud computing systems need at least twice the number of storage devices it requires to keep all of its clients’ information stored. That’s because these devices, like all computers, occasionally break down. A cloud computing system must make a copy of all its clients’ information and store it on other devices. The copies enable the central server to access backup machines to retrieve data that otherwise would be unreachable. Making copies of data as a backup is called redundancy.

Cloud Computing Applications

The applications of cloud computing are practically limitless. With the right middleware, a cloud computing system could execute all the programs a normal computer could run. Potentially, everything from generic word processing software to customized computer programs designed for a specific company could work on a cloud computing system.

Why would anyone want to rely on another computer system to run programs and store data? Here are just a few reasons:

  • Clients would be able to access their applications and data from anywhere at any time. They could access the cloud computing system using any computer linked to the Internet. Data wouldn’t be confined to a hard drive on one user’s computer or even a corporation’s internal network.
  • Corporations might save money on IT support. Streamlined hardware would, in theory, have fewer problems than a network of heterogeneous machines and operating systems.
  • It could bring hardware costs down. Cloud computing systems would reduce the need for advanced hardware on the client side. You wouldn’t need to buy the fastest computer with the most memory, because the cloud system would take care of those needs for you. Instead, you could buy an inexpensive computer terminal. The terminal could include a monitor, input devices like a keyboard and mouse and just enough processing power to run the middleware necessary to connect to the cloud system. You wouldn’t need a large hard drive because you’d store all your information on a remote computer.
  • Corporations that rely on computers have to make sure they have the right software in place to achieve goals. Cloud computing systems give these organizations company-wide access to computer applications. The companies don’t have to buy a set of software or software licenses for every employee. Instead, the company could pay a metered fee to a cloud computing company.
  • Servers and digital storage devices take up space. Some companies rent physical space to store servers and databases because they don’t have it available on site. Cloud computing gives these companies the option of storing data on someone else’s hardware, removing the need for physical space on the front end.
  • If the cloud computing system’s back end is a grid computing system, then the client could take advantage of the entire network’s processing power. Often, scientists and researchers work with calculations so complex that it would take years for individual computers to complete them. On a grid computing system, the client could send the calculation to the cloud for processing. The cloud system would tap into the processing power of all available computers on the back end, significantly speeding up the calculation.

Cloud Computing Concerns

Perhaps the biggest concerns about cloud computing are security and privacy. The idea of handing over important data to another company worries some people. Corporate executives might hesitate to take advantage of a cloud computing system because they can’t keep their company’s information under lock and key.

The counterargument to this position is that the companies offering cloud computing services live and die by their reputations. It benefits these companies to have reliable security measures in place. Otherwise, the service would lose all of its clients. It’s in their interest to employ the most advanced techniques to protect their clients’ data.

Privacy is another matter. If a client can log in from any location to access data and applications, it’s possible the client’s privacy could be compromised. Cloud computing companies are finding ways to protect client privacy. One way is to use authentication techniques such as user names and passwords.

Another is to employ an authorization format — each user can access only the data and applications relevant to his or her job.

The Bottom Line

Cloud computing allows groups to become more efficient through sharing. It does not bog down your server and no software installation is required. Businesses may create a private cloud within their own firewalls if the security demands of the public cloud seem alarming and depending on the provider, cloud computing groups may be scalable or virtualized.

Cloud computing comes into focus when you think about what IT always needs: a way to increase capacity or add capabilities on the fly without investing in new infrastructure, training new personnel, or licensing new software. Cloud computing encompasses any subscription-based or pay-per-use service that, in real time over the Internet, extends IT’s existing capabilities. video poker online for free